2x^2=x(x-14)-5

Simple and best practice solution for 2x^2=x(x-14)-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x^2=x(x-14)-5 equation:



2x^2=x(x-14)-5
We move all terms to the left:
2x^2-(x(x-14)-5)=0
We calculate terms in parentheses: -(x(x-14)-5), so:
x(x-14)-5
We multiply parentheses
x^2-14x-5
Back to the equation:
-(x^2-14x-5)
We get rid of parentheses
2x^2-x^2+14x+5=0
We add all the numbers together, and all the variables
x^2+14x+5=0
a = 1; b = 14; c = +5;
Δ = b2-4ac
Δ = 142-4·1·5
Δ = 176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{176}=\sqrt{16*11}=\sqrt{16}*\sqrt{11}=4\sqrt{11}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-4\sqrt{11}}{2*1}=\frac{-14-4\sqrt{11}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+4\sqrt{11}}{2*1}=\frac{-14+4\sqrt{11}}{2} $

See similar equations:

| -8-8x=-18 | | 4x^{2}-27x-5=-10x | | 2t+5t=9-7+19 | | x/−17+4x−2x=7 | | 212=5n | | 8x+1+x-10=4x-6 | | −2x=−2x−2(1.6x+4.8) | | 4x^{2}-27x-5=-10x4x2−27x−5=−10x | | 4-8x=-2 | | 3(4x+2)=-9x+2 | | 3(4x+2)=-9x+2) | | 5t−4=6 | | n+369=930 | | 4x+9=174.)2x+1=1 | | 2x9=11x | | -3+18=6b-3-5b | | 3x+4=31* | | 1/2+5x=18 | | (2000)((.5^x)/30)=125 | | 82=k+21 | | 14x2-4=-2x2+60 | | -3c=-4-c | | -(6m+8)=4(17–m) | | 10+2/3=r+12+1/6 | | z-33=-19 | | 180=x+x+4x | | (10+2/3)=r+(12+1/6) | | −7.7n=8-9.7n | | .1(x+4)-2+2.4x=-5 | | -12a-8a-(-5)=-15 | | 35+40x=95 | | 1.875=1/2^x |

Equations solver categories